theoretical investigation of the growth rate of carbon nanotubes in chemical vapor deposition
نویسندگان
چکیده
the growth rate of carbon nanotubes in chemical vapor deposition is simulated by using a theoretical analysis of the phonon vibration of the system. simulations demonstrate that the growth rate of carbon nanotubes with larger diameters is smaller because of higher damping factors and carbon nanotube inertia. an optimum temperature for the growth rate is calculated for a carbon nanotube on fe catalyst. simulations from the theory are in good agreement with reported experimental results.
منابع مشابه
investigation of the electronic properties of carbon and iii-v nanotubes
boron nitride semiconducting zigzag swcnt, $b_{cb}$$n_{cn}$$c_{1-cb-cn}$, as a potential candidate for making nanoelectronic devices was examined. in contrast to the previous dft calculations, wherein just one boron and nitrogen doping configuration have been considered, here for the average over all possible configurations, density of states (dos) was calculated in terms of boron and nitrogen ...
15 صفحه اولOptimized Conditions for Catalytic Chemical Vapor Deposition of Vertically Aligned Carbon Nanotubes
Here, we have synthesized vertically aligned carbon nanotubes (VA-CNTs), using chemical vapor deposition (CVD) method. Cobalt and ethanol are used as the catalyst and the carbon source, respectively. The effects of ethanol flow rate, thickness of Co catalyst film, and growth time on the properties of the carbon nanotube growth are investigated. The results show that the flow rate of ethanol and...
متن کاملTheoretical Descriptions of Carbon Nanotubes Synthesis in a Chemical Vapor Deposition Reactor: A Review
The mechanisms by which carbon nanotubes nucleate and grow are still poorly understood. Understanding and mathematically describing the process is crucial for its optimization. This paper reviews different models which have been proposed to explain carbon nanotube growth in the chemical vapor deposition process. The review is divided into two sections, the first section describes some nucleatio...
متن کاملOn the Growth and Microstructure of Carbon Nanotubes Grown by Thermal Chemical Vapor Deposition
Carbon nanotubes (CNTs) were deposited on various substrates namely untreated silicon and quartz, Fe-deposited silicon and quartz, HF-treated silicon, silicon nitride-deposited silicon, copper foil, and stainless steel mesh using thermal chemical vapor deposition technique. The optimum parameters for the growth and the microstructure of the synthesized CNTs on these substrates are described. Th...
متن کاملGrowth of Carbon Nanotubes Via Chemical Vapor Deposition NSF Summer Undergraduate Fellowship in Sensor Technologies
Carbon nanotubes (CNTs) are an unusual, tubular form of carbon, composed of a lattice of carbon hexagons rolled into a tube of nanometer-scale diameter. After the finding of CNTs in 1991 by Iijima on the cathode of an arc-discharge instrument, nanotechnology and nanoscience expanded tremendously. The subsequent discoveries of carbon nanotubes’ unique properties fueled research into all aspects ...
متن کاملGrowth of carbon nanostructures upon stainless steel and brass by thermal chemical vapor deposition method
The lack of complete understanding of the substrate effects on carbon nanotubes (CNTs) growth poses a lot oftechnical challenges. Here, we report the direct growth of nanostructures such as the CNTs on stainless steel 304and brass substrates using thermal chemical vapor deposition (TCVD) process with C2H2 gas as carbon sourceand hydrogen as supporting gas mixed in Ar gas flow. We used an especi...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
iranian journal of science and technology (sciences)ISSN 1028-6276
دوره 35
شماره 1 2011
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023